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Abstract-Locally transversely isotropic elastic material can be used in a cylinder configuration in
which the material principal direction is helically wound. Stress-strain equations are oblained for
such a cylinder under axi'llIy symmetric loading: allial force. lwisting moment and uniform radial
internal "nd ellternal pressure forces. The equations "re gcner"lized to a system of n coaxial tubes
with an isotropic core. Finally. it is shown how this cOIn be used to represenlthe global mechanical
behaviour of strand-like systems such as overhe'ld dectrieal conductors and cables.

INTRODUCTION

Elcctril:al power is oft~n trunsmitt~d through a conducting metal core surrounded by a
number ofinsulating layers. The lalter may be fibre reinforced and the mechanical behaviour
of the resulting conductor can be studied as a system ofcoaxial locally• transversely isotropic
tubes with libres helically wound in each cylinder. Generally. the winding direction alternates
from one layer to next. On the other hand. overhead electrical conductors consist simply
of several layers of ulmuinum wires, which may be wound uround a steel core in the case
of ACSR (aluminum conductor steel reinforced). Load carrying cables arc very similar.
Also. complex combinations of the foregoing can b~ found for example in underwater
power cables, in which load carrying steel cables are embedded in an insulating matrix
surrounding conducting copper wires. Such systems huve been described by Curlson et al.
(1(73).

Th~ mechanical behaviour of stranded systems such as cables and overhead electrical
conductors is usually swdied using discrete models. in which each wire is considered
separately. This is of course advantageous in some problems. such as structural integrity
assessment. Various assumptions have been made concerning the contact conditions. result­
ing in several models. mostly for systems under axiulload with varying degrees of rotational
restraint at the ends. Typical of this approach arc works by Hruska (1952). Machida and
Durelli (1973). Phillips and Costello (1985). Knapp (1979) and Lanteigne (1985). These
models are generally developed for a small number of wires. However. when this number
increases. as well as the number of layers. it may be appealing. at a certain point. to resort
to a continuous or. at least. semi-continuous model. since a finite number of cylinders is
still needed. corresponding to the same number of layers as in the actual system. This idea
has already been explored by R'loof (1983). In his work. Raoof replaces each cable layer
with an orthotropic lamina. The natural axes of each lamina arc wound helically to form
a cylinder. Elastic paramet~rs are obtained from intcrwire contact considerations. However.
elasticity plays a role only in the cylinder tangential plane. Radial motion is solely due to
the variation of the helix angle under tensile load. The effect of Poisson's ratio in this
direction is neglected. In the present analysis. the case of cylinders made of a locally
transversely isotropic material under various axially symmetric loads is first studied. A
comparison is then made with some discrete models. Under the no-slip assumption. available
elastic parameters are adjusted to fit selected discretc model global characteristics.
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GOVER;-.lING EQUAT10~S

The basic constitutive equations for a transversely isotropic. linearly elastic material
the preferred direction of which is that of a unit vector :a}. have been expressed by Spencer
t'l a!. (198·+) as

( I )

where :x. p. Jll and Jlf are elastic parameters. These parameters are related to the usual
elastic moduli in the following fashion:

Jlt = GL

JiT = Gr = Er/2(vT + 1)

[
ET ] I

~= ET vL(~·T-vl.+I)- £~\'r I(\'T+I)~'

EI ,
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(2)

(3)

(4)

(5)

«())

(7)

(9)

In these equations. subscript L corresponds to the longitudinal (fihre) direction, while T
corresponds to any transverse direction. Thus. HI. and HI' are the clastic moduli in the L­
and T·din:ctions, respectively. GL is the shearing modulus for shear strain between the L­
direl:tion and any T-dircl:tion while (ir is the shearing modulus for shear strain hetween
any two orthogonal T-directions. VI is Poisson's ratio for stress in the T-dircction and strain
in the perpendkular T-direction. vi. corresponds to strain in the T-din:ction due to stress
in the L-direction. whik ~'L. corresponds to strain in the lAlirection under stress in the '1'­
direction. These seven moduli must satisfy the two following conditions:

. ErGI = ------------
2(1+\',)

leaving only five independent clastic COllstants. These constants, to be physically meaningful.
have to satisfy several inequality constraints which can be founu in any book on composite
matcri~lls, such as the one by Jones (1975).

The helix angle 0 of the fibres in a cylinder is measured with respect to the cylinder
axis (Fig. I). Unit vectors red. {e~},:el} are in the rauial. circumferential anu axial

­e1

­e3Ior-......~~
~----_.._--_._ ... __ .-

- FIBRE
____ ~~E~~__~_ •

Fig. I. Locally transversely isotropic cylini..lcr: system of coordinate:;.



A study of helically reinforced cylinders under axially symmetric loads 191

directions, respectively. With respect to this system, the unit vector {a} has the following
components:

a3 = cos O. (10)

The stress-strain equation, eqn (I), can be written in matrix form as

{tT} = [Q]{e}

with

and [Q] the stiffness matrix defined by eqns (AI)--(AI4).

(II)

(12)

(13)

DISPLACEMENTS AND STRESSES FOR ONE CYLINDER

Under an axially symmetric load, following an argument by Verma and Rana (1983),
one may assume that a point initially at (r.!/I. =) goes to (Ur.!/I + 4>=. w=) after deformation.
Thus the displacement components are

It I = II = (U - I )r

II! = (' = c/J=r

II, = W = (w-1)= = 1:=

( 14)

( 15)

( 16)

where U is a non-dimensional fUOI.:tion of r. to be found. c/J the twist angle per unit length
and i: = w-I the axial strain. Displacements (15) and (16) arc based on the assumption
that the end of the cylinder, ==O. is fixed. These displacements result in the following
strains:

dU
ell = U-I+ (l;' ( 17)

e!! = U-I (18)

e33 =w-I =e ( 19)

t:!3 = !4>r (20)

t:13 = t:12 =0 (21)

which satisfy compatibility conditions. Finally, the stress equilibrium equations yield

,2 d2_~ +3r dU + UQII -Qu +4>r 2QI4 -Q24 +w QI3 - Q23
dr" dr QII QII QII

+ QU+Q23-QII-QI3 = 0
QII

where Qij are elements of the material stiffness matrix [Q].
A general solution to this equation is

(22)
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in which
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(23)

(24)

(25)

(26)

(27)

q,. Cfz arc undetermined parameters. while cP and ware constants related to the type of end
loading being imposed on the cylinder. Stresses can be (krived from eqn (23)

(28)

(29)

(30)

(31 )

(32)

Parameters en D•• E•• F. (i = 1.2.3.4) depend on the elastk constants as indicated in eqns
(A 15)-(A 18). The case of a single transversely isotropic cylinder subjected to axial loads
(force and moment) together with internal and external pressure is shown in eqns (A28) .
(A37).

SEVERAL CYLINDERS WITH AN ISOTROPIC CORE

We consider a system of 11 concentric cylinders. Cylinder i extends from inner radius
" ,to outer radius ' .. The system external radius is thus 'n' The previous equations apply
to each separate cylinder with all the parameters and functions indexed accordingly. For
example. displacements become fl. i V. i W.i stresses O"'l,i' etc. This docs not apply to global
coordinates' and =and to global deformation parameters (P. (I). f. which arc assumed to be
the same for all cylinders. That is to say. we assume perfect bonding between cylinders. An
elastic isotropic core is also assumed. extending from r = 0 to r o. For the core. eqn (23)
simply becomes

(33)

with the corresponding stress field
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U31.0 = U12.0 = 0

where

Boundary conditions at each interface '. are

UII.iI,_"=UII.i+II,=,, (i=O..... n-l)

while at the outer radius' = 'n. there may be an external pressure Pc such that

In matrix notation, these 2n+ I equations become

[M]{tf} = t/>{X'}+w{W'}+{ y'}
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(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41 )

(42)

with vectors {X'}, {W'}, {Y'} and the matrix [M] defined in eqns (A20)-(A22). Multiplying
by [M) - I yidds

{tf} = t/){X}+w{W}+{ Y}.

GLOBAL STIFFNESS MATRIX

The total axial load N on the cylinder system is given by

N = ±21t 1" U]].,' d,
, .. 0 J" I

with the convention that' _ I = O.
Substitution of axial stress eqn (30) yields

In the same fashion. the twisting moment M on the system is

which yields after integration

(43)

(44)

(45)

(46)
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Table I. Geometry and elastic properties of a
typical 6 x 1 steel strand

Core

£, = 207 GPa
", = 0.3
" = 1.27 mm

layer

£, = 207 GPa
\,'1 = 0.3
" = 3.81 mm
II = 5

m, = 6 wires

Equations (45) and (47) can be written in matrix form as

(47)

{N} = [N I

M M,
(48)

wilh the matrix codliciellts defined in eqns (A51) and (A52). It can be checked that the
2 x 2 matrix is symmdric with N~ = JI I • The last term of eqn (48) depcnds only on the
applied pressure Pc' It vanishes whcn Pc = O.

AI'I'UCATION TO A STRAND

A conlinuous model for such systems will be appropriate when the number of wires
in each layer is sutlicielltly large. However, in order to show the principle of parameter
identilkation and a comparison with available resulls, we consider a simple. one-layer
model consisting of seven identical win:s, one of which is the core while the other six arc
helically wound around it. Parameters arc given in Table I. Such a system has been studied
extensively under various assumptions. Arter linearization, one should get a relationship
similar to eqn (4g). without the pressure term, between the axial loads Nand M, and the
global deformation parameters I: and 4). Matrix parameters depend on material properties,
wire radii and helix angle. However, it has been shown (Blouin, 1988) that most models do
not yield a symmetrical matrix. Thus, for these models, after linearization, we obtain

{N} = [A BJ {I:}
M C D IP

(49)

in which, generally, B # C. We calculate A. B, C and D for this seven-wire system from
Phillips and Costello (1985). The same coetlicients calculated from Machida and Durelli
(1973) and Knapp (1979), with ,I compressible core, diner by about 1% from these values.

Elastic properties of the continuous model. consisting of a transversely isotropic tube
with an isotropic core, arc selected as follows. Core properties arc the same as those of the
actual wire material. However, the layer longitudinal modulus £t..1 has to be reduced if one
decides to keep the same cylinder thickness as that of the six-wire layer. Thus, since each
wire has a radius r n = rc

6n:r~
Eu = ,~--,- £c = 0.75£,.

n:(rj -rii)
(50)

Here we neglect the slight clTect of wire helix inclination. The same helix angle is taken for
the tube tibre direction as for the wire strands. The other clastic constants have been chosen
as
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Table 2. Adjusted stiffness coefficients of transversely isotropic cylinder
model
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N. M, M;
(xI06 Nmm) (xI06 Nmm) (xlO·Nmm~

7.026 1.234 1.234 2.398

Table 3. Closeness of fit between continuous and discrete model
coefficients. as calculated from Hruska (1952)

IMI-CI/C

3.9% 11.4% 6.7tt{, 8.2~o

(51 )

Vi.. 1 = VT.I =0.3 (52)

Gl.I = 40G·r.1 (53)

where GT.1 is obtained from eqn (9). It can be checked that such values arc admissible.
Corresponding values of the stilfnesscoefficients Nt. N~, If/ft. M: ofeqn (48) arc shown

ill Table 2, while the degree of closeness between these coefficients and those calculated
from Phillips .lOd Costello's model is shown in Table 3. Adjustment was made through
parameters Hr.1 and Gt .1 only and a closer agreement between both models could be sought,
for example by varying Vt.•1 ;:tnd Vr.1 independently. Since the discrete model is already based
Oil a number of assumptions, this has not been deemed necessary. Thus, using the selected
elastic constants, some numerical results arc shown in Figs 2 and 3 for the case where a
zero rotation is imposed on the system. In Fig. 2, the radial stress is shown as n function
of r for axinl loads N =8 and 16 kN and zero external pressure. In particular, one can
obtain the interface pressure between the core and the tube. This pressure renchcs 1.11 MPa
for an axiallond of8 kN, as compared with a value of 1.51 MPa if calculated by Hruska's
formulas for the same geometric parameters (diameters and helix angle) and assuming a
uniform distribution of line loads over the core surface. The 30% difference can be con­
sidered as very encouraging considering that both approaches are basically different and
Hruska's model being a very simplified one. In Fig. 3, shear stress in the cylinder is shown
for various combinations of axial load N and external pressure Pc. Since there is no end
rotation, the shear stress is obviously zero in the isotropic core.

- 3.0 r--.,-----;:---.,..---r--.,..-....,

N =16 kN

ORTHOTROPIC
TUBe:. • 2.4 F------f.

::E

CORE

(1)·1.8
(I)
w
a:
t; • 1.2 F-----,
...J
0(

~ - 0.6
a:

o. 0 ':--......._~:----L_-:-.l:-:-_...L.:::::::::~.
o. 1.27 2.54 3.81

RADIAL DISTANce (mm)
Fig. 2. Radial stress in cylinder and core under axial load and zero twist (t!> == 0). with no external

pressure.
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40. r---.--,----r----r---r----,

CORE..
Q.

:::E 20.

rn
rn
~ o. t------il.
I- : ..:........ p = 10 MPa
~ : JC,J&1IL ++Il,.++++++++++
< ,,,,,~D =20 MPaw ·20. ~.j.8
:I: ++++ N =0 kN ........
rn .. +++++++

- N = 20 kN

3.81
·40. '-_........__.......__""'-_--''--_-L__..J

O. 1.27 2.54

RADIAL DISTANCE (mm)

Fig. 3. Shear stress in cylinder and core under axial load and lero twist (IP = 0). with external
pressure.

CONCLUSION

The primary objective of this work was to derive equations describing the behaviour
of a system of coaxial cylinders under axisymmetric loading. Such a system is mechanically
plausible in its own right. However, the longer range objective is the application of such a
semi-continuous model to strand-like systems such as electrical conductors and cables.
Indeed discrete models arc generally not appropriate for a study of the bending behaviour,
which is of great importance in such phenomena as transverse vibration and fatigue. A
continuous model might shed light on some aspects of this problem. Extension of the
present continuous model to the bending problem shall mean abandoning the simple Verma
and Rana displacement equations, eqns (14) (16). containing only one unknown function
and two unknown parameters. Of course, a simple starting point would be to usc the usual
Bernoulli Eulcr hypothesis on plane cross-sections. However. it has been shown by Bauchau
(1985) that this hypothesis is inadequate for beams constituted with anisotropic materials.
Thus, a more rigorous approach should take into account possible cross-section warping.
Finally, a crucial step is in the proper selection of the elastic constants. The procedure
which has been used here, based on the adjustment of these constants to a known theoretical
discrete model, was only for illustrative purposes. A more rational approach would be,
following McConnell and Zemke (1982), to usc experimental data, for a given system. or
clse, to go deeper into contact considerations such as those used by Raoof (1983).
Conversely, the present method could be used to comparc the consistency of various discrete
models and to evaluate the inlluence of several of the assumptions which are often made.
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APPENDIX

I. Material stiffness matrix {QJ

QIl QIl Qn QI4 0 0

Q,~ Qu Q~) QN 0 0

QIJ Q~J QH QH 0 0
{QJ= Q,. Q~. Q... Q.. 0 0 (Al)

0 0 0 0 Q., Q,.

0 0 0 0 Q,. Q••

Letting c = cos 0 and ,f = sin (I. with helix angle O. the matrix coefficients are

2. Stre.u equations constants
For i = 1.2.3.4 and t<lking into account the symmetry of matrix {QJ

C, = Q,,(k, + I)+Q:I

D, = Q,,(k:+ 1)+Qu

£, = Q... +a(2Q,,+Q:')

(A2)

(A3)

(M)

(AS)

(M)

(A7)

(A8)

(M)

(AlO)

(All)

(AI2)

(AD)

(AI4)

(AIS)

(AI6)

(AI7)

(AI8)
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3. Multi-layer case with isotropic core
{q}T = {q,."ql.\qo., ... ql.,qo., ... q\~qo.• }

a,l'a

£t.t r "

(a,-a,)r,

(£I.'-£I.I)r,

(AI9)

with i = I n anti letting

{X" }

{W} =

{ y'}

(a,+, -a..Jr.

(£ .... ,-£,..)r.

(£1.. - £1..-, )r. _ ,

-Eiftr"

h,

£1.1 -£<v)r<

ho-h,

F..,-FI.I

b,it-I-h.i

FI.I~ I -FI.'

F,.,,-F,... I

-F1.'I

-hi

(/:~ v.I/'.) - 1-""

h,-h,

1-",., .-1-",.,

h,,-h,lt I

1"1,1-1-'1,,1 t

F I ,.. I -F,,1I

- p, + F, .•

S~.j = -~~.I1

(A20)

(:\21)

(:\22)

(A2.1)

(A24)

(A25)

(:\26)

non-vanishing dements of (2n + I) X (2n + I) matrix [M I arc given by

A/, .. 1.1 .. 1 = D I., j. IS :'.1' I

M,~ = .)',.,.

M" = C,.,S,.,.

M" = l.

M" = E),',.

M,.• = R ....

,\(,.ltt ~ = SI.II--'>

AI,. I.' = CI.IRI.I'

.\f,~ 1..4:.1 = el.l .. 1SI)t-I.

M" = S~.,

M" = f),.,S~.,

M,.", = R,..
,\fJ.1t. t- t = S:..il' I

.H,. I.'" = DI.,R,.1

for j = 2i + l. k = 2i. i = 1•.... n - I
(A27)

4. Glohal .ftil!nc.u matrix
Consider one isolated cylinder under internal pressure P,n and e:tternal pressure p". Boundary conditions on

normal strc~s at internal radius r,. and e:tterna1 radius r" arc
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qICI~+qIDI~,}+EI~ri.+F,£= -Pia

or. in matrill form

{AfJ{q} =~{t'}+w{W}+{f'}

where

Multiplying by [.frr " one obtains

{q} =~(g}+w{W}+{ f}

that is

q, =,p,f,+wW,+ f ,

q, = t/lf:+wWI + f"

Now. calculating the tensile load fit on the cylinder, from eqn (44). one obt.tins

[n the same fashion, the twisting moment Mon the cylinder is obtained from eqn (46), yielding

where "'t I' ,'ltf l • At l arc given by

[99

(A28)

(A29)

(A30)

(A3\)

(AJ:!)

(AJ3)

(A34)

(A35)

(A36)

(An)

(A3R)

(A39)

(MO)

(Mil

(A42)

(A43)

(M4)

(MS)

Now for a solid cylinder under axial load and radial pressure P...... with an elastic, isotropic material. the foregoing
equations reduce to

(A46)

and
(M7)

with

SA$: 2'5:2"8
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(A~8)

(A49)

(A50)

A, and J, being the core cross-section area and polar inertia. respectively.
Thus. finally. for a system of n cylinders with an isotropic core. global parameters N, and i~ U == \.2.3)

from eqns (45) and (47) are given by

.
N, == L ,V,.,

k_1)

.
M, == L ,fi,J<

•• 0

where Nj.k and M!.k are obtained from eqns (A39) to (A50) by indexing all quantities for cylinder k.

(A5\)

(A52)


