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Abstract—Locally transversely isotropic elastic material can be used in a cylinder configuration in
which the material principal direction is helically wound. Stress-strain equations are obtained for
such a cylinder under axially symmetric loading: axial force. twisting moment and uniform radial
internal and external pressure forces. The equations are generalized to a system of # coaxial tubes
with an isotropic core. Finally, it is shown how this can be used to represent the global mechanical
behaviour of strand-like systems such as overhead electrical conductors and cables.

INTRODUCTION

Electrical power is often transmitted through a conducting metal core surrounded by a
number of insulating layers. The latter may be fibre reinforeed and the mechanical behaviour
of the resulting conductor can be studied as a system of coaxial locally, transversely isotropic
tubes with fibres helically wound in cach eylinder. Generally, the winding direction alternates
from one layer to next. On the other hand, overhead clectrical conductors consist simply
of several layers of aluminum wires, which may be wound around a steel core in the case
of ACSR (aluminum conductor steel reinforced). Load carrying cables are very similar.
Also, complex combinations of the foregoing can be found for example in underwater
power cables, in which load carrying steel cables are embedded in an insulating matrix
surrounding conducting copper wires. Such systems have been described by Carlson er al.
(1973).

The mechanical behaviour of stranded systems such as cables and overhead electrical
conductors is usually studied using discrete models, in which cach wire is considered
separately. This is of course advantageous in some problems, such as structural integrity
assessment. Various assumptions have been made concerning the contact conditions, result-
ing in several models, mostly for systems under axial load with varying degrees of rotational
restraint at the ends. Typical of this approach are works by Hruska (1952), Machida and
Durelli (1973), Phillips and Costello (1985), Knapp (1979) and Lanteigne (1985). These
models are generally developed for a small number of wires. However, when this number
increases, as well as the number of layers, it may be appealing, at a certain point, to resort
1o a continuous or, at least, semi-continuous model, since a finite number of cylinders is
still needed, corresponding to the same number of layers as in the actual system. This idea
has already been explored by Raoof (1983). In his work, Raoof replaces each cable layer
with an orthotropic lamina. The natural axes of each lamina are wound helically to form
acylinder. Elastic paramcters are obtained from interwire contact considerations. However,
clasticity plays a role only in the cylinder tangential plane. Radial motion is solely due to
the variation of the helix angle under tensile load. The effect of Poisson's ratio in this
direction is neglected. In the present analysis, the case of cylinders made of a locally
transversely isotropic material under various axially symmetric loads is first studied. A
comparison is then made with some discrete models. Under the no-slip assumption, available
elastic parameters are adjusted to fit selected discrete model global characteristics.
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GOVERNING EQUATIONS
The basic constitutive equations for a transversely isotropic. linearly elastic material
the preferred direction of which is that of a unit vector |a}. have been expressed by Spencer
et al. (1984) as
0, = A0y + 2prey, + 2{di@iggd;+a,a, 64+ 2( 1y — s M@ by + a,aien) + fa,a, aaey,

(1)

where x. f. p, and g, are elastic parameters. These parameters are related to the usual
elastic moduli in the following fashion:
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In these equations, subscript L corresponds to the longitudinal (fibre) direction, whilke T
corresponds to any transverse direction. Thus, £ and Ep are the clastic moduli in the L-
and T-directions, respectively. G s the shearing modulus for shear strain between the L-
direction and any T-direction while 7 is the shearing modulus for shear strain between
any two orthogonal T-directions. vy is Poisson’s ratio tor stress in the T-direction and strain
in the perpendicular T-direction. vi corresponds to strain in the T-dircction due to stress
in the L-direction, while v corresponds to strain in the L-direction under stress in the T-
direction. These seven moduli must satisfy the two following conditions

£y

= . ¥
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(8)
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leaving only five independent elastic constants. These constants, to be physically meaningtul,
have to sutisty severatl inequality constraints which can be found in any book on composite
maltcerials, such as the one by Jones {1975).

The helix angle ¢ of the fibres in a cylinder is measured with respect to the eylinder
axis (Fig. 1). Unit vectors {e,}. {e:}. {e;} arc in the radial, circumferential and axial

Fig. 1. Locally transversely isotropic cylinder: system of coordinates.
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directions, respectively. With respect to this system, the unit vector {a} has the following
components

a, =0, a, =sin 0, a3 = cos 8. (10)

The stress-strain equation, eqn (1}, can be written in matrix form as

{o} =[Q]{e} (11)

with
{6}7 = {611.022,033,023, 031,02} (12)
{e}t = {e11.€22. 831, 2623, 2651, 2642} (13)

and [Q] the stiffness matrix defined by eqns (A1)}-(A14).

DISPLACEMENTS AND STRESSES FOR ONE CYLINDER

Under an axially symmetric load, following an argument by Verma and Rana (1983),
one may assume that a point initially at (.. 2) goces to (Ur. ¢ + ¢z, wz) after deformation.
Thus the displacement components are

uy=u= U~ (14)
uy = v = dor (15)
wy=w=(w~1)z=1: (16)

where U is a non-dimensional function of r, 1o be found, ¢ the twist angle per unit length
and ¢ = w—1 the axial strain. Displacements (15) and (16) are based on the assumption
that the end of the cylinder, z = 0, is fixed. These displacements result in the following
striins ;

x,,=U—l+%—?r (N
£y = U—~1 (18
tepn=w~1=¢ (19)
£13 = ipr (20)
3 =£;2=0 2

which satisfy compatibility conditions. Finally, the stress equilibrium equations yield

,d°U du Q11—-0Q:: 20.—Q1s Qi3—0Qss
43—+ U + :
r r? rdf Qn or Qn +o oy
+Q12+Q:3—Q;:"‘Qn=0 @2)

QH

where Q,; are elements of the material stiffness matrix [Q].
A general solution to this equation is

5AS 15:1~G
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Us=q,r +q,* +apr+be+ | (23)
in which
ky=—1+ J(Q::/0) (24)
ky=—1- \/"(Q::/‘Qn) (25)
b= QS*'_:‘Q_I“ Q7N
Q 1 QJ-

4. ¢ are undetermined parameters. while ¢ and w are constants related to the type of end

loading being imposed on the cylinder. Stresses can be derived from eqn (23)
an =g Cf g, DA+ Epr+Fre (28)
G = Corf v b g D Evpr+ F e 29
oo =q,C +q. D Evpr+F e (30)
Goy = Ot v g DA+ Eypr+ F e 3n
oy =0a =0 (32)

Parameters C,, D,, E,, F, (i = 1,2, 3,4) depend on the elastic constants as indicated in cgns
(A15)-(A18). The case of a single transversely isotropie cylinder subjected to axial loads
(force and moment) together with internal and external pressure ts shown in eqns (A28)-
(A37).

SEVERAL CYLINDERS WITH AN ISOTROPIC CORE

We consider a system of n# concentric cylinders. Cylinder / extends from inner radius
r,  to outer radius r,. The system external radius is thus r,. The previous equations apply
to each separate cylinder with all the parameters and functions indexed accordingly. For
example, displacements become w; v, w, stresses g, etc. This does not apply to global
coordinates r and - and to global deformation parameters ¢, @, & which are assumed to be
the same for all cylinders. That is to say, we assume perfect bonding between cylinders. An
clastic isotropic core is also assumed, extending from r = 0 to ry. For the core, eqn (23)
simply becomes

Ug=qor (33)

with the corresponding stress ficld
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E
G0 = —[qotveel

c

0210 =010
E

O30 = *,'_[(l —V)e+2veq, o)

6230 = G.br

G310=0120=0
where

e = (l +vc)(l _zvc)-
Boundary conditions at each interface r, are
u-""”, = u.i&-l'rer. (l= O‘--~.n— I)

Givdemr, = Orriv il (i=0..... n—1)

while at the outer radius r = r,,, there may be an external pressure p, such that

ql.nc“l.n'dlkn""‘i"'ql.nl)l.nrkz"l + El,n(/’rn + Fl.ng = '—pc'
In matrix notation, these 2n4- | equations become

Ml{q} = X" H+ (W} +{Y'}
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(34
(3%)
(36)

37

(38)

(39

(40)

(41)

(42)

with vectors { X7}, {W’}, { Y’} and the matrix {M] dcfined in eqns (A20)-(A22). Multiplying

by [M] ™! yields
{q) =X} +a{W}+{Y}.
GLOBAL STIFFNESS MATRIX

The total axial load N on the cylinder system is given by

n

N=Y Znﬁ ayy,rdr

=0

with the convention that r_, = 0.
Substitution of axial stress eqn (30) yiclds

N=oN +¢N,+N,.

In the same fashion, the twisting moment M on the system is

n "
M=1Y 2n Gay,rt dr

i=0 i

which yields after integration

43)

(44)

(45)

(46)
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Table 1. Geometry and elastic properties of a
typical 6 x | steel strand

Core Laver
E. =207 GPa E, =207 GPa
v. =03 v =03
r.=1.27 mm r; =38l mm
=35

m, = 6 wires

M=wM,+ oM.+ M. 47)

Equations (45) and (47) can be written in matrix form as

N}_ N, N:] el N+ N, 48)
My M, M. ¢ M+ M, (

with the matrix cocflicients defined in eqns (A51) and (A52). Tt can be checked that the
2% 2 matrix is symmetric with N, = M. The last term of egn (48) depends only on the
applicd pressure p,. It vanishes when p, = 0.

APPLICATION TO A STRAND

A continuous model for such systems will be appropriate when the number of wires
in cach layer is sufliciently large. However, in order to show the principle of parameter
wentification and a comparison with available results, we consider a simple, one-layer
model consisting of seven identical wires, one of which is the core while the other six are
helically wound around it. Parameters are given in Table 1. Such a system has been studied
extensively under various assumptions. After lincarization, one should get a relationship
similar to eqn (48), without the pressure term, between the axial loads N and M, and the
global deformation parameters £ and ¢b. Matrix parameters depend on matenal propertices,
wire radii and helix angle. However, it has been shown (Blouin, 1988) that most models do
not yield a symmetrical matrix. Thus, for these models, after lincarization, we obtain

N A B & }
{M}=[C D] {b} “9

in which, generally, B # C. We calculate A, B, C and D for this seven-wire system from
Phillips and Costello (1985). The same coeflicients calculated from Machida and Durelli
(1973) and Knapp (1979), with a compressible core, differ by about 1% from these values.

Elastic properties of the continuous model, consisting of a transversely isotropic tube
with an isotropic core, are selected as follows. Core properties are the same as those of the
actual wire material. However, the layer longitudinal modulus £, has to be reduced if one
decides to keep the same cylinder thickness as that of the six-wire layer. Thus, since cach
wire has a radius r, = 1,

E, = M g _075E. (50)

n(ri—ra)

Here we neglect the slight effect of wire helix inclination. The same helix angle is taken for
the tube fibre direction as for the wire strands. The other elastic constants have been chosen
as
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Table 2. Adjusted stiffness coefficients of transversely isotropic cylinder
model

N, N. M, M.
{(x10°N) (x10*Nmm) (x10°Nmm) (x10°Nmm?

7.026 1.234 1.234 2.398

Table 3. Closeness of fit between continuous and discrete model
coefficients. as calculated from Hruska (1952)

N, —dlA |N—B|/B M, -CYC |M,— DD
3.9% 114% 6.7% 8.2%
ETJ = EL.|/4OO (5‘)
via = vy =03 (52)
GLJ = 4061-‘; (53)

where Gy, is obtained from cqn (9). It can be checked that such values are admissible.

Corresponding values of the stiffness cocfficients N, Ny, M, M, of eqn (48) arc shown
in Table 2, while the degree of closeness between these coeflicients and those calculated
from Phillips and Costello’s modcl is shown in Table 3. Adjustment was made through
parameters £y and Gy, only and a closer agreement between both models could be sought,
for example by varying vi ; and vy, independently. Since the discrete model is already based
on a number of assumptions, this has not been deemed necessary. Thus, using the sclected
clastic constants, some numerical results are shown in Figs 2 and 3 for the case where a
sero rotation is imposed on the system. In Fig. 2, the radial stress is shown as a function
of r for axial loads ¥ = 8 and 16 kN and zcro external pressure. In particular, one can
obtain the interfuce pressure between the core and the tube. This pressure reaches 117 MPa
for an axial load of 8 kN, as compared with a value of 1.51 MPa if calculated by Hruska's
formulas for the same geometric parameters (diameters and helix angle) and assuming a
uniform distribution of line loads over the core surface. The 30% difference can be con-
sidered as very encouraging considering that both approaches are basically different and
Hruska's model being a very simplified one. In Fig. 3, shear stress in the cylinder is shown
for various combinations of axial load N and external pressure p,. Since there is no end
rotation, the shear stress is obviously zero in the isotropie core.

- 3.0 ¥ T T T T

~ | CORE : ORTHOTROPIC -
&-24f : TUBE -
: -
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o

w —

3

Be12k

wd

2 =
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0. 1.27 2.54 3.81
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Fig. 2. Radial stress in cylinder and core under axial load and zero twist (¢ = 0}, with no external
pressure.
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Fig. 3. Shear stress in cylinder and core under axial load and zero twist (¢ = 0), with external
pressure.

CONCLUSION

The primary objective of this work was to derive equations describing the behaviour
of a system of coaxial cylinders under axisymmetric loading. Such a system is mechanically
plausible in its own right. However, the fonger range objective is the application of such a
semi-continuous model to strand-like systems such as electrical conductors and cables.
Indeed discrete models are generally not appropriate for a study of the bending behaviour,
which is of great importance in such phenomena as transverse vibration and fatiguc. A
continuous model might shed light on some aspects of this problem. Extension of the
preseat continuous model to the bending problem shall mean abandoning the simple Verma
and Rana displacement equations, eqns (14) (16), contiaining only onc unknown function
and two unknown parameters. Of course, a simple starting point would be to use the usual
Bernoulli -Euler hypothesis on plane cross-sections. However, it has been shown by Bauchau
(1985) that this hypothesis ts inadequate for beams constituted with anisotropic materials.
Thus, a more rigorous approach should take into account possible cross-scction warping.
Finally, a crucial step is in the proper selection of the clastic constants. The procedure
which has been used here, based on the adjustment of these constants to a known theoretical
discrete model, was only for illustrative purposcs. A more rational approach would be,
following McConnell and Zemke (1982), to use experimental data, for a given system, or
else, 1o go deeper into contact considerations such as those used by Raoof (1983).
Conversely, the present method could be used to compare the consistency of various discrete
models and to evaluate the influence of several of the assumptions which are often made.
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1. Material stiffness matrix [Q}

Q1=

-QH
Qll
Qs
QI‘

APPENDIX
Gz Cu G O 0
@ Q@ Qu O 0
@ On Qi 0 0
@ Qu Qa0 Y
0 0 0 Qu Qe
0 0 0 Qs Qoo

Letting ¢ = cos 6 and s = sin ), with helix angle 0, the matrix coefficients are

Qi = A+ 2
Q= Adas’
Q= A+act
Q4 = asc

Qi = A+ 20 + 267+ 2(py, = gy )] + fis’*

Q= Ad+a+ i

Qi = e+ 2, — o)+ fs’se

Qv = A+ 2pc + 202+ 2 py — e )] + e

Qe = la+2p, —pe)+fese

Qua = .+ fs?c?

Q,, == ﬂ'r~": +ch2

Qse = (e — piy)sc

Qos = pre® +p.5°.

2. Stress equations constants

Fori =1, 2,3, 4and taking into account the symmectry of matrix Q]

Co=Q,k +1)+Qy
D, = Q. k:+ D)+ 0y
E = Qu+a(2Q.,+Qx)
£ =Qu+bQ,+0u)

(AD

(A7)

(AB)

A9

(A10)

(All)

(AL2)

(Ald)

{Al4)

(A15)
(Al6)
(A7)
(A18)
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3. Multi-laver case with isotropic core
@ ={q0q 1920 40G2 - GinGon) (A19)

f“,l"o )

Eyry

(a:—ua )
(E\,—E, ),
=< T > (A20)
(@,oy—a,r
(El.u i _El..)r;

(Evn—Eraray
\"El.n"n J

fb' 7

E\ = Ev.lv.
ba=b,

S
|

Wr=< > (A21)

-h,
(Ev/yd=Fia
hy—b,

I"|,| -~ I'.I.!

-
[

b,~b
Fl.l - l'll.: [

ar b

o= j > (A22)

with ¢ = | nand letting

Ry, =rb (A23)
Ry, = rin (A24)
S, = —ry (A25)
Sy = —rfy (A26)

non-vanishing elements of (2n+ 1) x (2n+ 1) matrix [M] are given by

My =1 Miy=S,. M, =5,
My = Efye. Mup=CS,. My=D.S:,
M,=R,. Mu..= Ry,
M =S Mo =50,
M. .=CR,, M, ke = DRy,

A",» ko2 ™ Cl_.»lsr,.»l- A",. ey = D:,.; IS:.n:

for =2+l k=2 i=1...n-1
M= CiaRi, Moot = DR (A7)

4. Global stiffness matrix
Consider one isolated cylinder under internal pressure p,, and external pressure pe,. Boundary conditions on

normal stress at internal radius r,, and external radius 7 are
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g C+q:D g+ Epra+Fie= —py

q;C;’t" +qu.r‘:§+£‘¢"¢,+Fz8 = = Pex

or. in matrix form

where
n=[c% o]
()T ={-Er, —Eir}
(W' ={-F F}
(P = {Fi—pn Fi—pul.
Multiplying by [37]~". one obtains
{a} = (R} +o{W}+{F}
that is
g =¢8+oW +F,
g, =8, +0l¥,+ 7,
Now, calculating the tensile load & on the cylinder, from eqn (44). one obtains
N=wl +¢8,+N8,

where Ny, N, ¥, arc given by

A e Tt
F WD S F Py

,x‘vx_.,),.z ,Jzin__,x,u ! ____rt
ﬂ‘ =3 } ~ s TTw . o L o n
N, J{?;G - +£.0, oS +E,5

s+ 2+ 2 1 2
+?3D;r:£' _"};\‘* _F]rum’m]’

ki+2 2

In the sume fashion, the twisting moment M on the cylinder is obtained from eqn (46), yielding

M = wd, + 60, + 1,

where AT, M,, M, arc given by

[ 'J“ﬁ)“ ta i”— 243 P
A7, =2 Ted ™l v a in ex " g
M, R-W,C., k’+3—*"+} Wy PR +F, 3 ]
- r ri;tl__ (3 ,)‘.b)_rt,v) ot
‘ 1=2 - L n ) e L) ) "
=2 ~,?,C, Tt .0, T tETy
- r ’31»1_“ ye 3 r‘;”-—r":” oy
“f =2 & h ¢ wn — @ bicd .
3 ke ?](?; k‘ +3 +'i’2[)‘ kz *.3 F; 3
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(A28)

(A2%)

(A30)

(A35)

(A6)

(A3D)

(A3R)

(A3

{A40)

{A4D)

(A42)

(A43)

(Add)

{A45)

Now for a solid cylinder under axial load and radial pressure ., o, with an clastic, isotropic material, the foregoing

equations reduce to
Bo=wN o+ Ny,

and
3"7.0 = 'ﬁif:‘o

with

SAS 29:2-H

{A46)

(A4T)
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N:,o = A.E (A48)
Nio= ~A‘.Ec(! +,7 E) {A49)
My, = Gyl (A50)

A, and J, being the core cross-section area and polar inertia, respectively.
Thus, finally, for a system of # cylinders with an isotropic core, global parameters N, and M, (j = 1.2.3)
from eqns (45) and (47) are given by

N=YRN, (ASH)
k=t

M=3 M, (A52)
kw(

where N, and M, are obtained from eqns (A39) to (A50) by indexing all quantities for cylinder 4.



